

Technical Data Sheet

Re-issued September 2001

EPON™ Resin 58005

Product Description

EPON™ Resin 58005 is an elastomer modified epoxy functional adduct formed from the reaction of the diglycidyl ether of bisphenol A and a carboxyl terminated butadiene-acrylonitrile elastomer. Elastomer content is approximately 40% by weight. Primary use of EPON 58005 is the modification of conventional epoxy systems to increase flexibility, adhesion properties and fatigue resistance.

Application Areas/Suggested Uses

High performance adhesives, featuring:

- · Higher peel and shear strengths
- Thermal shock resistance
- · Greater fatigue resistance
- Fatigue resistant composite structures

Benefits

- High elastomer content convenient adjustment of elastomer content
- Compatible with a wide range of liquid epoxy resins
- Imparts improved peel strength and fatigue resistance with minimal reduction of stiffness and maximum operating temperature

Sales Specification

Property	Units	Value	Test Method/Standard		
Epoxide Equivalent Weight	g/eq	325 – 375	ASTM D1652		
Viscosity at 25°C	Р	3,000 – 8,000	ASTM D2196		
Color	Gardner	11 max.	ASTM D1544		
Appearance		Clear to Slight Hazy Liquid			

Typical Properties

Property	Units	Value	Test Method/Standard
Density at 25°C	lb/gal	9.0	ASTM D1475

	I	

General Information

As a result of a relatively high acrylonitrile content, EPON 58005 is compatible with most epoxy resin types, including bisphenol F and novolac epoxies, within the typically used range of concentrations (<50% by weight). Concentration of this modifier required for optimum performance is dependent upon factors of resin type, curing agent type, and specific performance requirements, but is generally found to be within the 20-50% by weight range. Effect of EPON 58005 concentration on the working characteristics and adhesive properties of an EPON Resin 828/EPI-CURE™ 3072 Curing Agent model system is illustrated by Figure 1 and data listed in Table 1.

Figure 1 / Viscosity of EPON™ Resin 58005/EPON Resin 828 Blends

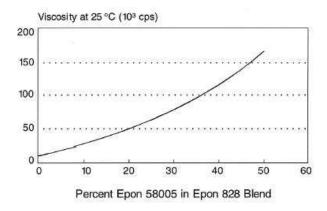


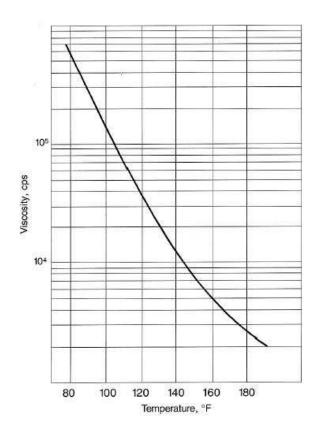
Table 1 / Effect of EPON™ Resin 58005 concentration on properties of an epoxy system

	Method	<u>Units</u>	<u>A</u>	<u>B</u>	<u>C</u>	D	<u>E</u>
EPON Resin 58005		pbw		12.5	25	37.5	50
EPON Resin 828		pbw	100	87.5	75	62.5	50
EPIKURE™ Curing Agent 3072		pbw	35	33	30	29	27
Handling Properties @ 25°C							
Initial viscosity		сР	4,000	7,720	13,700	21,200	32,200
Gel Time, 100 gram mass		minutes	43	48	51	61	73
Cure Schedule		wk/°C	1/25	1/25	1/25	1/25	1/25
Cured State Properties ¹							
Tensile Strength	ASTM D638						
Aluminum/Aluminum		psi	2,000	2,060	2,760	4,020	3,960

Steel/Steel	psi	2,600	3,700	3,880	4,290	3,910
90° Peel Strength						
Aluminum/Aluminum	lbs/inch	2-3	4-6	10-12	14-16	20-22
Hardness	Shore D	86	85	84	81	80

¹ Determined at 23 °C following one week cure at 25 °C.

Being epoxy functional, EPON 58005 can be cured with converters commonly used in conventional epoxy systems. Due to its higher weight per epoxide, adjustment of curing agent level should normally coincide with incorporation of this modifier resin. Effect of EPON 58005 incorporation on the properties of standard systems cured with a representative aliphatic amine, aromatic amine, and a catalytic curative is indicated by Table 2 data. The high viscosity of EPON 58005 will normally necessitate that this resin be heated in order to facilitate pumping or blending operations. Figure 2 provides guidance as to the reduction in product viscosity resulting from increasing temperatures within the 75 - 190 °F range.


Table 2 / Effect of EPON™ Resin 58005 on adhesive properties of various systems

	Method	<u>Units</u>	<u>A</u>	<u>B</u>	<u>C</u> 1	D
EPON Resin 828		pbw	100	62.5	100	75
EPON Resin 58005		pbw		37.5		25
EPIKURE™ Curing Agent 3234		pbw	13	11		
Dicyandiamide		pbw			6	6
Cure Schedule		wk/°C	1/25	1/25	2hrs/93 + 2hrs/150	2hrs/93 + 2hrs/150
Cured State Properties ²						
Tensile Strength	ASTM D638					
Aluminum/Aluminum		psi	1,520	3,270	2,530	4,150
Steel/Steel		psi	2,610	4,100	5,100	5,230
90° Peel Strength						
Aluminum/Aluminum		lbs/inch	0.5-1.0	5.0		
Hardness		Shore D	88	70		

¹ System modified with 2 phr Cab-O-Sil M-5 to retain suspension of dicyandiamide through gelation. Cab-O-Sil is a registered trademark of Cabot Corporation.

Figure 2 / **EPON™ Resin 58005** Viscosity **vs. Temperature**

² Determined at 23 °C. Systems A and B cured one week at 25 °C. Systems C and D cured two hours at 93 °C plus two hours at 150 °C.

Safety, Storage & Handling

Please refer to the MSDS for the most current Safety and Handling information.

Please refer to the Hexion web site for Shelf Life and recommended Storage information.

Exposure to these materials should be minimized and avoided, if feasible, through the observance of proper precautions, use of appropriate engineering controls and proper personal protective clothing and equipment, and adherence to proper handling procedures. None of these materials should be used, stored, or transported until the handling precautions and recommendations as stated in the Material Safety Data Sheet (MSDS) for these and all other products being used are understood by all persons who will work with them. Questions and requests for information on Hexion Inc. ("Hexion") products should be directed to your Hexion sales representative, or the nearest Hexion sales office. Information and MSDSs on non-Hexion products should be obtained from the respective manufacturer.

Packaging

Available in bulk and drum quantities.

Contact Information

For product prices, availability, or order placement, please contact customer service: www.hexion.com/Contacts/

For literature and technical assistance, visit our website at: www.hexion.com

 $\ensuremath{\mathbb{B}}$ and $\ensuremath{^{\text{TM}}}$ Licensed trademarks of Hexion Inc.

DISCLAIMER

The information provided herein was believed by Hexion Inc. ("Hexion") to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion's terms and conditions of sale. HEXION MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY HEXION, except that the product shall conform to Hexion's specifications. Nothing contained herein constitutes an offer for the sale of any product.

PDS-3614- (Rev.7/15/2015 11:16:03 AM)